awesome-ai-models

Awesome AI Models

A curated list of awesome AI models from various domains and frameworks. This repository aims to gather the most significant and cutting-edge AI models available in the open-source community. Whether you’re a researcher, developer, or enthusiast, you’ll find valuable resources here to enhance your projects.

Table of Contents


Introduction

Artificial Intelligence (AI) has revolutionized numerous fields, from natural language processing to computer vision and beyond. This repository collects some of the most impactful and widely used AI models, making it easier for you to find and utilize them in your projects.


PyTorch Models

Natural Language Processing

  1. BERT (Bidirectional Encoder Representations from Transformers)
    ★★★★★
    Impact Score: 98
  2. GPT-2 (Generative Pretrained Transformer 2)
    ★★★★★
    Impact Score: 96
    • GitHub: openai/gpt-2
    • Description: Large-scale transformer-based language model.
  3. RoBERTa
    ★★★★☆
    Impact Score: 92
  4. DistilBERT
    ★★★★☆
    Impact Score: 88
  5. XLNet
    ★★★★☆
    Impact Score: 90
    • GitHub: zihangdai/xlnet
    • Description: Generalized autoregressive pretraining for language understanding.
  6. T5 (Text-to-Text Transfer Transformer)
    ★★★★★
    Impact Score: 95
  7. CTRL (Conditional Transformer Language Model)
    ★★★★☆
    Impact Score: 85
    • GitHub: salesforce/ctrl
    • Description: A conditional transformer language model for controllable text generation.
  8. ALBERT (A Lite BERT)
    ★★★★☆
    Impact Score: 89
  9. Bart
    ★★★★☆
    Impact Score: 87
    • GitHub: pytorch/fairseq
    • Description: Denoising autoencoder for pretraining sequence-to-sequence models.
  10. Pegasus
    ★★★★☆
    Impact Score: 86
    • GitHub: google-research/pegasus
    • Description: Pre-training with extracted gap-sentences for abstractive summarization.
  11. ELECTRA
    ★★★★☆
    Impact Score: 88
    • GitHub: google-research/electra
    • Description: Pre-training text encoders as discriminators rather than generators.
  12. Longformer
    ★★★★☆
    Impact Score: 84
  13. Reformer
    ★★★★☆
    Impact Score: 83
    • GitHub: google/trax
    • Description: Efficient Transformer model with reduced memory consumption.
  14. Transformer-XL
    ★★★★☆
    Impact Score: 85
  15. DialoGPT
    ★★★★☆
    Impact Score: 82
    • GitHub: microsoft/DialoGPT
    • Description: A large-scale pretrained dialogue response generation model.
  16. MarianMT
    ★★★★☆
    Impact Score: 80
  17. Megatron-LM
    ★★★★★
    Impact Score: 94
    • GitHub: NVIDIA/Megatron-LM
    • Description: Large, powerful transformer models for NLP tasks.
  18. DeBERTa
    ★★★★☆
    Impact Score: 89
    • GitHub: microsoft/DeBERTa
    • Description: Decoding-enhanced BERT with disentangled attention.
  19. BARTpho
    ★★★☆☆
    Impact Score: 75
  20. CamemBERT
    ★★★★☆
    Impact Score: 81

Computer Vision

  1. ResNet
    ★★★★★
    Impact Score: 97
    • GitHub: pytorch/vision
    • Description: Deep residual networks for image recognition.
  2. EfficientNet
    ★★★★☆
    Impact Score: 91
  3. YOLOv5
    ★★★★★
    Impact Score: 95
  4. Mask R-CNN
    ★★★★★
    Impact Score: 94
  5. U-Net
    ★★★★☆
    Impact Score: 88
  6. StyleGAN2
    ★★★★★
    Impact Score: 93
    • GitHub: NVlabs/stylegan2
    • Description: Generative adversarial network for image synthesis.
  7. CLIP
    ★★★★★
    Impact Score: 96
    • GitHub: openai/CLIP
    • Description: Connects text and images in a single embedding space.
  8. DINO (Self-Distillation with No Labels)
    ★★★★☆
    Impact Score: 89
  9. Swin Transformer
    ★★★★☆
    Impact Score: 90
  10. DeepLabV3
    ★★★★☆
    Impact Score: 87
    • GitHub: pytorch/vision
    • Description: Semantic image segmentation model.

Audio Processing

  1. WaveGlow
    ★★★★☆
    Impact Score: 85
    • GitHub: NVIDIA/waveglow
    • Description: Flow-based generative network for speech synthesis.
  2. Tacotron 2
    ★★★★☆
    Impact Score: 86
  3. Open Unmix
    ★★★★☆
    Impact Score: 80
  4. DeepSpeech
    ★★★★☆
    Impact Score: 83
  5. Wav2Vec 2.0
    ★★★★★
    Impact Score: 92
    • GitHub: pytorch/fairseq
    • Description: Self-supervised learning of speech representations.

Reinforcement Learning

  1. Stable Baselines3
    ★★★★☆
    Impact Score: 88
  2. RLlib
    ★★★★☆
    Impact Score: 90
    • GitHub: ray-project/ray
    • Description: Scalable reinforcement learning library.
  3. OpenAI Baselines
    ★★★★☆
    Impact Score: 87
    • GitHub: openai/baselines
    • Description: High-quality implementations of RL algorithms.
  4. pytorch-a2c-ppo-acktr-gail
    ★★★★☆
    Impact Score: 85
  5. CleanRL
    ★★★★☆
    Impact Score: 82
    • GitHub: vwxyzjn/cleanrl
    • Description: High-quality single-file implementations of Deep RL algorithms.

TensorFlow Models

Natural Language Processing

  1. BERT
    ★★★★★
    Impact Score: 98
  2. ALBERT
    ★★★★☆
    Impact Score: 89
  3. Transformer
    ★★★★☆
    Impact Score: 90
  4. XLNet
    ★★★★☆
    Impact Score: 85
  5. ELECTRA
    ★★★★☆
    Impact Score: 88
    • GitHub: google-research/electra
    • Description: Pre-training text encoders as discriminators rather than generators.

Computer Vision

  1. EfficientNet
    ★★★★☆
    Impact Score: 91
  2. ResNet
    ★★★★★
    Impact Score: 97
  3. YOLOv4
    ★★★★☆
    Impact Score: 88
  4. DeepLab
    ★★★★☆
    Impact Score: 87
  5. MobileNet
    ★★★★☆
    Impact Score: 85

Audio Processing

  1. WaveNet
    ★★★★☆
    Impact Score: 86
  2. DeepSpeech
    ★★★★☆
    Impact Score: 83
  3. SpeechTransformer
    ★★★★☆
    Impact Score: 80
  4. Sound Classification
    ★★★★☆
    Impact Score: 78
  5. VoiceFilter
    ★★★★☆
    Impact Score: 75

Reinforcement Learning

  1. TF-Agents
    ★★★★☆
    Impact Score: 88
    • GitHub: tensorflow/agents
    • Description: Reinforcement learning library for TensorFlow.
  2. Dopamine
    ★★★★☆
    Impact Score: 85
    • GitHub: google/dopamine
    • Description: Research framework for fast prototyping of RL algorithms.
  3. TRFL
    ★★★★☆
    Impact Score: 82
  4. DeepMind Control Suite
    ★★★★☆
    Impact Score: 80
  5. TensorForce
    ★★★★☆
    Impact Score: 78

Core ML Models

  1. MobileNetV2
    ★★★★☆
    Impact Score: 85
  2. YOLOv3-CoreML
    ★★★★☆
    Impact Score: 82
  3. Style Transfer
    ★★★★☆
    Impact Score: 80
  4. Handwriting Recognition
    ★★★★☆
    Impact Score: 78
  5. DeepLabV3-CoreML
    ★★★★☆
    Impact Score: 75

JAX Models

  1. Flax Vision Transformers
    ★★★★☆
    Impact Score: 88
  2. JAX MD
    ★★★★☆
    Impact Score: 82
    • GitHub: google/jax-md
    • Description: Machine learning for molecular dynamics simulations.
  3. Neural Tangents
    ★★★★☆
    Impact Score: 80
  4. Flow Matching Models
    ★★★★☆
    Impact Score: 78
  5. JAX RL
    ★★★★☆
    Impact Score: 75

ONNX Models

  1. ONNX Model Zoo
    ★★★★★
    Impact Score: 95
    • GitHub: onnx/models
    • Description: Pre-trained state-of-the-art models in ONNX format.
  2. BERT-ONNX
    ★★★★★
    Impact Score: 93
  3. ResNet-ONNX
    ★★★★★
    Impact Score: 94
  4. GPT-2-ONNX
    ★★★★★
    Impact Score: 92
  5. YOLOv3-ONNX
    ★★★★☆
    Impact Score: 88

Contributing

Contributions are welcome! You can open an issue or submit a pull request to add new models or improve existing ones.


License

MIT License

This repository is licensed under the MIT License.


Made with ❤️ by DrHazemAli


Note: The ranking stars and impact scores are based on the models’ popularity, performance, and influence in the AI community.